Panels photovoltaic solar energy

Installation of thermal solar energy

Solar power plant
Thermoelectric

System

Thermodynamic system

Thermodynamic system

A thermodynamic system is a portion of the material space, separated from the rest of the thermodynamic universe (that is, from the external environment) by means of a real or imaginary control surface (or edge), rigid or deformable.

A thermodynamic system can be the seat of internal transformations and exchanges of matter and / or energy with the external environment (that is, everything external to the system that interacts with it).

Classification of thermodynamic systems

Within thermodynamics there are three main types of thermodynamic systems: open, closed and isolated.…

Solar thermal energy

Solar thermal energy

The solar thermal energy consists of the use of energy from the Sun to transfer it to a medium that carries heat, usually water or air.

Among the different applications of solar thermal energy there is the possibility of generating electric power. The current technology allows to heat water with solar radiation to produce steam and subsequently obtain electrical energy.

Although the principle of operation is very similar there are two main applications of solar thermal energy:

  • Thermal single energy for use in homes and small installations
  • Large thermal solar…

Geothermal heat pump

Geothermal heat pump

The geothermal heat pump is an air conditioning system for buildings that exploits the heat exchange with the superficial subsoil, by means of a heat pump. Since the heat in the subsoil comes largely from the interior of the Earth, geothermal energy of low enthalpy is classified as a source of renewable energy, although the heat pump itself consumes electricity, generally produced from other sources of energy (for example, fossil fuels).

The heat pump allows the exchange of heat between a "source" at a lower temperature than the "well", or the point where the heat is introduced. In a…

Thermodynamics

Thermodynamics

Thermodynamics is the branch of classical physics that studies and describes the thermodynamic transformations induced by heat and work in a thermodynamic system, as a result of processes that involve changes in the temperature and energy state variables.

Classical thermodynamics is based on the concept of macroscopic system, that is, a portion of physical mass or conceptually separated from the external environment, which is often assumed for convenience that is not disturbed by the exchange of energy with the system. The state of a macroscopic system that is in equilibrium conditions…

Internal energy - Thermodynamics

Internal energy - Thermodynamics

In thermodynamics, the internal energy is the total energy contained in a thermodynamic system.

The internal energy is the energy that is needed to create the system. According to this definition, the energy to displace the environment of the system, any energy related to external force fields (potential energy, gravitational energy, etc.) or any energy associated with the movement (for example, kinetic energy) is excluded from the internal energy. .

The internal energy of a system can be modified by exercising a work on it or by heating it (providing thermal energy). If we look…

Applications of photovoltaic solar energy

Applications of photovoltaic solar energy

The applications of photovoltaic solar energy are many and varied. In this field, they include from large power generation plants through photovoltaic panels, to small solar calculators.

A first way to classify the applications of photovoltaic solar energy is to distinguish the applications connected to the electrical network and the isolated installations.

The use of photovoltaic panels in isolated buildings is very useful since the investment needed to place solar panels on the roof of a farm, a chalet in the mountain or in a hotel in a secluded spot, is much less than what it…

First Law of Thermodynamics

First Law of Thermodynamics

The first law of thermodynamics was announced by Julius Robert von Mayer in 1841. It is the principle of conservation of energy.

Definition of the first law of thermodynamics: The total energy of an isolated system is neither created nor destroyed, it remains constant. Energy only transforms from one type to another. When one energy class disappears, an equivalent quantity of another class must be produced.

A body can have a certain speed with what has kinetic energy. If it loses speed, this kinetic energy that it loses becomes another type of energy, whether it is potential energy…

Photovoltaic

Photovoltaic

We refer to the photovoltaic effect in everything related to obtaining energy through the action of light.

The most used light source for photovoltaic installations is that coming from the Sun, that is, solar energy. Although there are small devices, such as calculators, that can work with artificial light.

Photovoltaic solar energy

Solar photovoltaic energy is a methodology for obtaining electrical energy thanks to photoelectric cells. It is a renewable energy since its energy source, the Sun, is considered inexhaustible.

Photoelectric cells are the main component…

Laws of thermodynamics

Laws of thermodynamics

Thermodynamics is mainly based on a set of four laws that are universally valid when applied to systems that fall within the constraints implicit in each.

The first principle that was established was the second law of thermodynamics, as formulated by Sadi Carnot in 1824. The 1860 already established two "principles" of thermodynamics with the works of Rudolf Clausius and William Thomson, Lord Kelvin. Over time, these principles have become "laws." In 1873, for example, Willard Gibbs claimed that there were two absolute laws of thermodynamics in his graphical methods in fluid thermodynamics.…

Thermodynamic processes

Thermodynamic processes

In physics, the thermodynamic process is called the evolution of certain quantities (or properties) properly thermodynamic relative to a particular thermodynamic system. From the point of view of thermodynamics, these transformations must proceed from a state of initial equilibrium to a final one; that is, that the magnitudes that undergo a variation when passing from one state to another must be perfectly defined in said initial and final states.

In this way the thermodynamic processes can be interpreted as the result of the interaction of one system with another after being eliminated…

Photosynthesis

Photosynthesis

Photosynthesis is a chemical process that converts carbon dioxide into organic compounds, especially, using the energy of solar radiation.

Photosynthesis occurs in plants, algae, and some groups of bacteria, but not in archaea. Photosynthetic organisms are called "photoautotrophs," but not all organisms that use light as an energy source effect photosynthesis, since "photoheterotrophs" use organic compounds, not carbon dioxide, as a carbon source. In plants, algae and cyanobacteria, photosynthesis uses carbon dioxide and water, releasing oxygen as a waste product. photosynthesis is crucial…

Components of photovoltaic installations connected to the network

Components of photovoltaic installations connected to the network

A photovoltaic solar installation connected to the network has only three basic elements:

  • A group of photovoltaic solar panels. These solar panels are usually located on the roof of a building or integrated into any structural element of the same building. The photovoltaic panels can also be arranged directly on any land near the electricity grid.
  • Ondulator or electronic inverter-converter. This device transforms the energy in the form of direct current provided by the solar panels, in alternating current of the same type and value as the one transported by the electric…

Hybrid system

Hybrid system

Hybrid solar energy systems are hybrid energy systems that combine the solar energy of a photovoltaic system with another source of energy that generates energy. A common type is a hybrid photovoltaic diesel system, which combines solar photovoltaic (PV) and diesel generators, or diesel generator sets, since PV has only a marginal cost and is treated with priority in the network. Diesel generator sets are used to constantly fill the gap between the current load and the actual power generated by the photovoltaic system.

Since the solar energy fluctuates and the generation capacity of…

Solar concentrator

Solar concentrator

A solar concentrator is a concentration system of solar energy that is used to convert solar energy into thermal energy. Its operation is based on the exploitation of the reflection of the solar rays obtained through reflective surfaces (substantially of mirrors), in order to concentrate on a receiver of contained size. Similar to a magnifying glass focusing its light on a point, the concentrators reflect sunlight by means of an arrangement of mirrors aligned towards a lens capable of capturing that energy for its use.

In general, heat is converted into mechanical energy by means of…

Heat

Heat

In physics, in particular in thermodynamics, heat is defined as the contribution of transformed energy as a result of a chemical or nuclear reaction and transferred between two systems or between two parts of the same system. This energy is not attributable to a job or a conversion between two different types of energy. Heat is, therefore, a form of transferred energy and not a form of energy contained as internal energy.

As the energy is exchanged, the heat is measured in the International System in joules. In practice, however, it is often still used as the unit of measurement of calories,…

Enthalpy What is it?

Enthalpy What is it?

Enthalpy is a term linked to the field of thermodynamics. The enthalpy symbol is H.

Enthalpy is also known as absolute enthalpy or amount of heat.

We define enthalpy as a physical quantity defined in the field of classical thermodynamics so that it measures the maximum energy of a thermodynamic system theoretically capable of being eliminated from it in the form of heat or thermal energy.

Enthalpy is particularly useful in the understanding and description of isobaric processes: the constant pressure, the enthalpy change are directly associated with the energy received…

Active solar energy

Active solar energy

Active solar energy classifies technologies related to the use of solar energy that use mechanical or electrical equipment to improve performance or to process the energy obtained by converting it into electrical or mechanical energy. These equipments can be fans, water pumps, etc.

In contrast, solar systems that do not use these devices are classified as passive solar energy systems.

Examples of active solar energy

The applications of active solar energy can be classified into two types:

  • Thermal solar energy
  • Photovoltaic Solar Energy

Components of a solar thermal installation

Components of a solar thermal installation

The function of a solar thermal installation is to take advantage of solar energy to generate heat. The solar panels of these facilities capture the heat of the solar radiation that falls on them to heat a fluid. The different ways to take advantage of this hot fluid allows us to use this type of renewable energy in multiple applications.

A solar thermal installation consists of:

  • Solar collectors
  • Primary and secondary circuits
  • Heat exchanger
  • Accumulator, pumps
  • Glass of expansion
  • Pipelines
  • Main control panel.

Low temperature thermal solar energy

Low temperature thermal solar energy

Low thermal solar installations are considered those installations that provide useful heat at temperatures below 65ºC through solar energy.

A low-temperature solar thermal installation consists of solar collectors, two water circuits (primary and secondary), heat exchanger, accumulator, expansion vessel and pipes.

Circulation of the water inside the circuits can be obtained by thermosiphon, taking advantage of the density difference of the water at different temperatures or by means of a circulation pump, although in this case an external contribution of electrical energy…

Adiabatic process

Adiabatic process

An adiabatic process is a thermodynamic process in which the system does not exchange heat with its surroundings. An adiabatic process may also be isentropic, which means that the process may be reversible.

The adiabatic process provides a rigorous conceptual basis for the theory used to expose the first law of thermodynamics and, as such, is a key concept in thermodynamics.

The term adiabatic refers to elements that impede the transfer of heat with the environment. An isolated wall is quite close to an adiabatic limit. Hence the adiabatic wall term appears.

A process that…

Third law of thermodynamics

Third law of thermodynamics

The third law of thermodynamics, sometimes called Nernst's Theorem or Nernst's Postulate, relates the entropy and the temperature of a physical system.

The third law of thermodynamics states that absolute zero can not be achieved in a finite number of stages. The third law of thermodynamics can also be defined as that when reaching absolute zero, 0 degrees Kelvin, any process of a physical system stops and when reaching absolute zero the entropy reaches a minimum and constant value.

This principle states that the entropy of a system at the absolute zero temperature is a well-defined…

Zero law of thermodynamics

Zero law of thermodynamics

The zero law of thermodynamics speaks of what we experience every day: two systems that are in thermal equilibrium with a third are in equilibrium with each other. It is said that two bodies are in thermal equilibrium when, on contacting each other, their state variables do not change. Around this simple idea the zero law is established.

Every law of physics has its relevance, as well as the zero law of thermodynamics, which curiously was the last law to be introduced in literature. After the realization that heat is a form of energy that could be transformed into another, thermology…

Isothermal process

Isothermal process

In thermodynamics, an isothermal process is a thermodynamic transformation at constant temperature, that is, a variation of the state of a physical system during which the temperature of the system does not change with time. Devices called thermostats can maintain a constant temperature value.

The isothermal transformation of a perfect gas is described by Boyle's law which, in a pressure-volume diagram (or Clapeyron's plane), is represented by a branch of the equilateral hyperbola.

Isotherm of a perfect gas Calculation of heat and work exchanged

For isothermal gas…

Thermodynamics

Thermodynamics

Thermodynamics is the branch of physics that studies the effects of changes in temperature, pressure and volume of a physical system (a material, a liquid, a set of bodies, etc.), at a macroscopic level. The term "thermo" means heat and dynamics refers to motion, so thermodynamics studies the movement of heat in a body. Matter is composed of different particles that move disorderly. Thermodynamics studies this disorderly movement.

The practical importance of thermodynamics lies primarily in the diversity of physical phenomena it describes. Knowledge of this diversity has resulted in…

Watt - Power unit

Watt - Power unit

The watt (symbol: W) is the power unit of the International System, it is the amount of energy in joules that is converted, used or dissipated in one second. It is a derived unit that takes its name from the engineer, inventor and constructor of Scottish instruments James Watt, for his contribution to the development of the steam engine, which was one of the triggers of the beginning of the Industrial Revolution.

The watt was adopted by the Second Congress of the British Association for the Advancement of Science in 1889, which meant its international recognition as a power unit, incorporating…

Solar heating systems with forced circulation

In many cases it is not viable to install solar power equipment for the production of hot water thermosyphon, since often the location of the solar collectors is above the tank (for example, sensors on the roof and inside the accumulator & rsquo; housing, golf sensors, etc.)

.

In this type of installation, the water flowing between the collector and the accumulator can not do it by natural convection since warmer water (sensors) and is at its highest point and there is no natural force that makes displace the cold water that is already at the lowest point and is the heaviest.

Parabolic cylinder solar collector

Parabolic cylinder solar collector

The parabolic cylinder solar collector is another type of solar thermal collector. This type of solar panel used in solar thermal installations uses parabolic cylinders to concentrate all the solar radiation in a point. Instead of heliostats, this type of collector employs parabolic trough mirrors. For the focus of the parabola passes a pipe that receives the concentrated rays of the Sun, where the fluid is heated, usually a thermal oil. Currently the fluid reaches temperatures close to 400º C.

Until recently, the use of thermal solar CCP concentration systems was restricted to…

Solar collector

Solar collector

Solar collectors are the elements that capture solar radiation and convert it into thermal energy, into heat. It is a type of solar panel designed for use in solar thermal installations. It is also known as a solar collector.

The function of solar thermal energy is to take advantage of solar energy to obtain heat, to heat a fluid. Unlike photovoltaic solar energy whose function is to generate electricity.

As solar collectors, those with flat plates, those with vacuum tubes and absorber collectors without protection or isolation are known. The flat (or flat plate) collection systems…

Temperature

Temperature

Temperature is a physical quantity of matter that expresses quantitatively the common notions of heat and cold. The objects of low temperature are cold, while objects of higher temperatures are considered warm or hot. The temperature is measured quantitatively with thermometers. The thermometers can be calibrated with respect to different temperature scales.

Scales to measure temperature

The three most common scales to measure the temperature are:

  • The Celsius scale (degrees centigrade)
  • The Kelvin scale
  • The Fahrenheit scale

Almost everyone…

Definition of balance of system (BOS)

The balance of system (also known by the acronym BOS) comprises all components of a photovoltaic system with the exception of photovoltaic panels. This includes wiring, switches, a mounting system, one or more solar inverters, batteries and battery charger.

Other optional components include revenue grade meter renewable energy credit, a follower of…

Domestic hot water (DHW)

Domestic hot water (DHW)

One of the applications of solar thermal energy is the obtaining of sanitary hot water (ACS). Solar collectors capture the energy of solar radiation to increase the temperature of a fluid.

Domestic hot water (DHW) is water intended for human consumption (potable) that has been heated. It is used for sanitary uses (bathrooms, showers, etc.) and for other cleaning uses (washing dishes, washing machine, dishwasher, floor scrubbing). In terms of energy, the ACS is an important component to take into account, since it represents between 25 and 40% of the energy consumption of homes.

As…

Vacuum tube solar collector

Vacuum tube solar collector

A solar collector of vacuum tubes is a type of solar panel that takes advantage of solar thermal energy. This type of solar panel is formed by linear collectors housed in vacuum glass tubes.

The solar collector of vacuum tubes consists of a set of cylindrical tubes. The tubes are formed by a selective absorber, located on a reflector settlement and surrounded by a transparent glass cylinder.

Between the transparent outer tube and the inner absorber, the vacuum has been made. With this, conduction and convection losses from the absorbent surface are avoided and this fact allows…

Power inverter

Power inverter

An inverter is an electronic device. The function of the inverter is to change a DC input voltage to a symmetrical AC output voltage, with the magnitude and frequency desired by the user. The inverters use in a great variety of applications, from small power supplies for computers, to industrial applications to control high power. The inverters are also used to convert the direct current generated by photovoltaic solar panels, accumulators or batteries, etc., into alternating current and thus be able to be injected into the electrical network or used in isolated electrical installations.

Power inverter

Power inverter

An inverter is an electronic device. The function of the inverter is to change a DC input voltage to a symmetrical AC output voltage, with the magnitude and frequency desired by the user. The inverters use in a great variety of applications, from small power supplies for computers, to industrial applications to control high power. The inverters are also used to convert the direct current generated by photovoltaic solar panels, accumulators or batteries, etc., into alternating current and thus be able to be injected into the electrical network or used in isolated electrical installations.

A…

Entropy - Thermodynamics

Entropy - Thermodynamics

What is entropy? Entropy (S) is a thermodynamic quantity originally defined as a criterion for predicting the evolution of thermodynamic systems.

Entropy is a function of extensive character state. The value of entropy, in an isolated system, grows in the course of a process that occurs naturally. Entropy describes how a thermodynamic system is irreversible.

The meaning of entropy is evolution or transformation. The word entropy comes from the Greek.

Entropy in the world of physics

In physics, entropy is the thermodynamic magnitude that allows us to calculate the…

Solar batteries

Solar batteries

The batteries in a photovoltaic solar energy system is to accumulate the energy produced by the photovoltaic panels during the hours of Sun to be able to use it at night or on cloudy days.

The use of batteries also allows to provide a higher current intensity than a functioning photovoltaic panel can offer. This would be the case if several electrical appliances were used at the same time.

A battery consists of small 2V accumulators integrated in the same element; Has direct current at 6, 12, 24 or 48V. The accumulator is the cell that stores energy through an electrochemical…

Frequently asked questions about solar energy

Frequently asked questions about solar energy

In this section we intend to answer the main questions related to solar energy.

Generally, these are general topics that could be located in several sections of the web. Our intention is to expand this section in the future to publish generalist articles and curiosities of nuclear energy.

Most of the questions are focused on small solar installations, comparative with solar thermal energy and photovoltaic solar energy.

In the future we will also answer on more oriented questions in the field of physics: thermodynamics, forms of energy, mechanical energy, potential energy,…

Types of photovoltaic cells

Types of photovoltaic cells

The photovoltaic cells are responsible for converting solar radiation into electrical energy in the form of direct current. Photoelectric cells are an indispensable element for this type of renewable energy.

There are different types of photoelectric cells depending on the nature and characteristics of the materials used. The most common type is the crystalline silicon cell (Si). This material is cut into very thin disc-shaped, monocrystalline or polycrystalline sheets, depending on the manufacturing process of the silicon bar.

The first crystalline cell that was manufactured…

Thermosyphon solar systems

These equipments have a natural circulation based on convection currents formed in the fluid at different temperatures.

If we heat a water tank at the bottom when the bottom water warms, it becomes less dense and rises to the surface where it cools. Then returns to the bottom of the container and thus a natural circulation flow is generated.

This is the operating principle of a thermosiphon team, which will be essential that:

  • The solar collector (heat sources) is always located below the level of the accumulator.
  • The primary circuit is as short as possible…

Photovoltaic panel

Photovoltaic panel

A photovoltaic panel is a type of solar panel designed for the use of photovoltaic solar energy. Its function is to transform solar energy into electricity.

Photovoltaic panels can be used to generate electrical power in both domestic applications and commercial applications.

The photovoltaic modules are formed by a set of interconnected photovoltaic cells. The photovoltaic cells that make up a photovoltaic panel are embedded and protected. The photovoltaic panel is in charge of directly transforming the energy of solar radiation into electricity, in the form of direct current.

Solar Furnace

Solar Furnace

A solar oven or solar oven is an optical system to provide concentrated solar radiation. The concentrated energy of sunlight can be used for simple heating of a material, aging experiments of plastics or paints, endothermic chemical reactions or for charging experiments with mechanical or electrical components.

The solar oven system is widely used in solar thermal power plants.

The principle of the solar oven is also used to build cheap solar solar cookers, and for solar water pasteurisation.â €

The difference between the solar oven system and a solar panel is…

Photovoltaic installations connected to mains

Photovoltaic installations connected to mains

The electric current generated by a photovoltaic installation can be discharged to the electricity grid as if it were a power station. The electricity consumption is independent of the energy generated by the photovoltaic panels. In these cases, the user continues to buy the electric energy that consumes the distributor company at the established price and also owns an electric power generating facility.

The most common powers are 2.5 and 5 kW or multiples of 5 to 100 kW. There are larger facilities, but only by companies or research centers, as they are amortized over longer periods.

Location of solar panels

Location of solar panels

Any implementation of a sustainable photovoltaic solar energy system implies the optimization of the resources to be used. This is the basis of the design and assembly of solar installations.

To achieve optimum optimization of solar radiation, that is, the use of the Sun, it is essential to know the solar trajectory, the profile of the needs and the conditioners of the location. All this involves determining the orientation and inclination of the solar panels in fixed installations to achieve the minimum cost of the kilowatt hour of this type of renewable energy.

For reasons of…

Biomass energy

Biomass energy

Bioenergy is biological energy, and it allows biological entities (living beings) to move, to have brain activity and food production and synthesis of biological tissues.

Bioenergy is continuously retransformed cyclically. The typical bioenergetic cycle of plants is called the "Calvin cycle". The bioenergetic cycle of living beings is called the "Krebs cycle". In these cycles the transformation of sugars occurs in other carbohydrates, the purpose of this transformation is the synthesis of very high energy concentration molecules, such as ATP and ADP.

Technological uses of bioenergy

Applications of solar thermal energy

Applications of solar thermal energy

Solar thermal energy uses solar radiation to increase the internal energy of an element. Said in one way: to heat an element. Normally a liquid is heated to be able to transport this energy more easily to the place where you want to take advantage of it.

In single-family homes it is very common to see solar collectors. The function of these collectors is to heat sanitary hot water for domestic use or for heating. They are generally support systems but allow considerable financial savings. The installation of these solar collectors is very popular in certain areas due to its low installation…

Photovoltaic power plant

Photovoltaic power plant

A photovoltaic power plant is a set of facilities designed to supply electricity to the grid through the use of large-scale photovoltaic systems. The function of the photovoltaic power station is to capture and transform solar radiation into electricity.

A photovoltaic power plant is a power plant consisting basically of photovoltaic modules and an inverter. The photovoltaic panels are in charge of transforming the solar radiation, into electrical energy of direct current. The inverter is the electronic equipment whose function is to convert the DC power produced by the photovoltaic…

Electricity

Electricity

We have two definitions of electricity depending on whether ns refer to physical phenomena on a macroscopic scale or on a microscopic scale.

With the term electricity we refer generically to all physical phenomena in a macroscopic scale that involves one of the fundamental interactions, the electromagnetic force, with particular reference to electrostatics. At the microscopic level, these phenomena are due to the interaction between charged particles on a molecular scale: the protons in the nucleus of atoms or ionized molecules and the electrons. The typical macroscopic effects of such…

Greenhouse effect

Greenhouse effect

The greenhouse effect is the process by which the atmosphere of a planet passes solar radiation from the Sun, but instead prevents or hinders the thermal energy output of the planet.

It is called greenhouse effect due to the similarity with the operation of the greenhouses that are able to retain the heat inside. The operation is not exactly the same, but it is very similar. The difference is that the greenhouse uses the glass and not the gases in the atmosphere to retain heat. That is why this natural phenomenon has been called the greenhouse effect.

When we talk about the greenhouse…

Geothermal energy

Geothermal energy

Geothermal energy is a type of renewable energy on a human scale that is obtained from the heat of the interior of the Earth. Equestrian thermal energy can be obtained without the combustion of any material, it is therefore a form of clean energy without carbon dioxide emissions.

The temperature in the inner layers of the Earth remains constant during the different seasons of the year. Generally the inner layers are hotter than the surface in winter and cooler in summer. This is because the surface layers are heated and cooled more easily according to the laws of thermodynamics.

Wind power

Wind power

Wind energy is the energy obtained from the wind. This renewable energy takes advantage of the kinetic energy generated by the effect of air currents, and is transformed into other forms useful for human activities. Wind power has been used since ancient times to move sail-driven boats or operate milling machinery when moving its blades.

When operating by wind, an inexhaustible resource is considered that wind energy is a renewable energy.

Currently, wind energy is mainly used to produce electricity through wind turbines. This type of energy can also be used in other applications…

Charge controllers

Although in principle it seems that in an installation of photovoltaic solar energy just need solar modules and batteries, there is a key element in these facilities is what ensures that, in the charging process as in the discharge accumulators, is made so that they are always within the correct operating conditions: the charge controller.

Solar panels are designed so that they can give a higher than the end voltage battery charging voltage. This ensures that the solar panels are always able to charge the battery, even when the temperature of…

High-temperature solar thermal energy

We refer to hight-temperature solar thermal to those collectors who work at temperatures above 500 ° C. They are used for power generation.

The technologies used in hight-temperature solar thermal energy are:

  • Parabolic trough solar collectors
  • Central tower
  • Parabolic dishes or parabolic reflector
  • Linear Fresnel concentrators
Parabolic trough solar collectors

Disadvantages of solar energy

Disadvantages of solar energy

The characteristics of solar energy imply certain advantages with respect to other sources of energy.

Although the characteristics are different in photovoltaic solar installations and solar thermal installations, we will treat the disadvantages globally.

Certain disadvantages of solar energy may imply that a solar installation may be unfeasible. The aspects to consider are the following:

  • Energy efficiency is poor compared to other energy sources.
  • The economic cost compared to other options.
  • Performance is a function of the weather.
  • Limitations…